Chapter J:
Diffraction and Beam Formation
Using Arrays
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Beam Formation Using Arrays

Focusing:
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Focusing € -2 Beam Formation

—

['o form a beam of sound wave such
hat only the objects along the beam

t
direction are illuminated and possibly
detected.
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o 9 Nomenclature
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x: Lateral, azimuthal, scan
y: Elevational, non-scan
z: Axial, range, depth

Beam pattern
Radiation pattern
Diffraction pattern
Focusing pattern






Beamforming

e Manipulation of transmit and receive
apertures.

* Trade-off between performance/cost to
achieve:

— Steer and focus the transmit beam.

Dynamically steer and focus the receive beam.
Provide accurate delay and apodization.

Provide dynamic receive control.



Imaging Model

_ propagation , _

transmitter transducer in the body transducer recerver |d15play

A-scan:
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Scanning = Convolution
(Correlation vs. Convolution)



Imaging Model
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Ideally,
S(X’t) = R(X!y010t/2)

In practice,
B(x : determined by diffraction

A(® : determined by transducer bandwidth



Beam Formation as Spatial Filtering

beam
formation

object [°] propagation —

* Propagation can be viewed as a process of linear filtering
(convolution).

*Beam formation can be viewed as an inverse filter (or
others, such as a matched filter).



Imaging Model

i pulse echo body
i system
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Diffraction from 1D Apertures

) .
* Free space Green s function:
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In the Fresnel Region
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Focusing in the Far Field
(or Focal Point)

k& 12z << 1

jkz _jkx'*12z a ejkzejkx'z/Zz
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p(x',z) =

Z A

Aperture € (F.T.)=> Radiation Pattern

When not in the far field = effective aperture function

C(x)=|C(x)e />



Focusing: An Acoustic Lens

C(x)=|C(x)e />
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Radiation Pattern of a
Rectangular Aperture

p(x’,2)
IC(x)|
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Beam width vs. Aperture size and frequency
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[ ateral Resolution

* Frequency 1

* Aperture size 1

-3 dB, -6 dB, -10 dB, -20 dB,...etc.

narrow beam wide beam
——l G——ly



CW to Wideband

B(x',2z) =fT(X’,z,u))R(X’,Z,(D)A(m)ab)
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Radiation Pattern




Unfocused

i

Focused at 2 range Focused with twice the aperture



Axial Intensity

— Unfocused
Focused

—— Focused at 72 range
[\ — Focused with 2X aperture




Diffraction and Propagation Delays






CW to Pulse Wave

p(x',z,t) fAt T (X,X',Z))cosw, (t -t (x,x',2z))adx
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CW to Pulse Wave

'=0
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Beam Formation Using Arrays
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Propagating Delays

t(x;,,R,0)

((x ~ Rsin ) +R200326) X2 o )\’
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In Fresnel region

P 2
t(x,,R,G)z—R 1+ X’Z—X" sSno - Xzsn 6\—
Cc 2R R 2R )
_R(, X \ R x,Sn® x°00s°0
1——S|n6+ 0+=—- +
o R 2/?2 ) ¢ C 2Rc

Effective aperture size: 2, = 24cosO



Propagating Delays

Transmit:
X. SN0  x°cos’O
TT(X,,R,6)=— ’ Sp—
C 2Rc
Receive:

2R x,9n0 Xx°cos’O
TR (X, R0) = - T

C C 2Rc



Beam Forming Using Arrays
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Radiation Pattern of

a Sampled Aperture (I)
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Radiation Pattern of
a Sampled Aperture (II)
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Interference




Interference




Array Steering and Grating Lobes
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Grating Lobes

No Grating Lobes With Grating Lobes




Grating Lobes (II)
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Beam Sampling

spatial frequency radiation pattern
(aperture function)
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Beam Sampling




Beam Sampling (1I)

One Way:
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2D Apertures



Diftraction for 2D Apertures

e/kd (X, y)(x",y"))
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Diftraction for 2D Apertures

Separable aperture function:

C(x,y)=C(x)C(y)
B(x',y',z)=B(x',z)xB(y',z) = F.T.[C(x)]xF.T.[C(y)]

Circular aperture = Jinc radiation pattern.



Two-Dimensional Transducer
Arrays



Motivations: Elevational Focusing

1D arrays have only fixed elevational
focusing capabilities. The elevational
focusing quality 1s determined by a
mechanical lens.

« 2D arrays must be used in order to have
electronic, dynamic 3D focusing.



Motivations: Elevational Focusing

* Although not apparent, elevational focusing
quality determines the “slice thickness
and 1s critical in 1mage quality (including
contrast resolution, noise characteristics and
elevational resolution).

slice thickness

[
=




Motivations: Real-Time 3D Imaging

e Current 3D 1maging (including flow
1imaging) 1s done by reconstruction using a
set of 2D 1mages. This 1s not real-time.

* Fully sampled (1.e., spatial Nyquist criterion
is satisfied in both directions) arrays must
be used to allow full 3D focusing and
steering capabilities.



Complications

* For a fully sampled aperture with a typical
size, the total channel count may exceed

10,000.

* As the element size decreases, electrical
impedance significantly increases, thus
resulting 1n poor signal to noise ratio.



Complications

 Inter-connection from each channel to the
front-end electronics becomes complicated
with 2D arrays.




Reduction of Channel Count

* Sparse array:

— A random selection of elements are removed
from the periodic dense array. Only a fraction
of the original elements remains.

— Mainlobe is un-affected. Grating lobes are
avolded. Sidelobes are higher.

— Electrical impedance 1s un-changed.

— Difficult to manufacture.



Reduction of Channel Count

e 1.5D array:
— Aperture 1n elevation 1s under-sampled.
— Electrical impedance 1s reduced.
— Total channel count is reduced.
— Lack of elevational steering.

— Full 3D focusing quality on the 2D 1mage
plane.

— Also known as an-1sotropic arrays.



Sampling of 1.5D Arrays

e Uniform sampling.

* Fresnel sampling.

* Geometric delays are symmetric.



Sparse Periodic Arrays

* Despite of the periodicity, grating lobes are
avolded by placing them at different
locations.




Sparse Periodic Arrays

* Two-way beam pattern 1s determined by
two-way aperture function, 1.e., the
convolution of the transmit aperture with
the receive aperture.

* By carefully choosing the aperture
functions, desired response can be
synthesized.



Sparse Periodic Arrays

Only valid for CW and in-focus. 4-to-1
reduction 1s reasonable.

Signal-to-noise ratio 1s affected.

In general, this 1s a synthetic aperture
approach.

This approach can be extended to 2D.



Lowering Impedance

» Electrical impedance significantly increases
(high resistance and low capacitance) with
small transducer area.

* For typical system characteristics, large
impedance means poor sensitivity.

* Impedance can be reduced by many
methods, including using multiple layer
piezoelectric material.



Multi-Layer Ceramic

» Acoustically 1n series and electrically in

parallel.

single layer multiple layer




Multi-Layer Ceramic

* On transmit, the acoustic output pressure 1s
increased by a factor of N (number of
layers) assuming the same drive voltage.

* The output pressure 1s also increased by
matching the impedance.



Multi-Layer Ceramic

* On receive, the received voltage is reduced
by a factor of N assuming the same
returning pressure.

 Capacitance is increased by a factor of N2,
due to the parallel connection and smaller
distance between plates.

* The receive improvement depends on
specific situations.



Multi-Layer Ceramic

 Both KLM and finite element models have
been used to predict the performance and
compared to measurement results.

* An alternative method 1s to have multiple
layers on transmit and signal layer on
receive.

» The coaxial cable capacitance can be
reduced by integrating front-end with
transducers.



Complications for Real-Time 3D

Imaging

Channel count.

System complexity associated with
increased channel count.

The number of beams 1n a 3D 1maging 1s
dramatlcally 1ncreased thus reducing
“frame rate

Parallel beam formation is desired.



Homework #2

* Computer Homework #2: Beam Formation
* Due 12:00pm 4/24/2012 by emailing to

>



Homework #2

Load hw2 dat.mat. In this data file, apertureU
defines a uniform aperture and apertureH
defines an aperture with non-uniform weighting.
The spacing between two points in both cases 1s
defined by dO in mm. The vector pulseF defines
a pulse spectrum of a particular excitation with
the frequency axis specified by faxis (in MHz).
Finally, the sound propagation velocity 1s
defined by soundV in mm/usec. In all figures,

please label all axes.




Homework #2

Assuming a continuous wave at SMHz from the far
field and zero incidence angle, plot the magnitude
of the one-way diffraction patterns for both
apertureU and apertureH (in dB). The horizontal
axis should be sinO from —1 to 1. (20%)

Assuming a pulse wave which has the frequency
response specified by pulseF and faxis, plot the
magnitude of the one-way, far-field diffraction
patterns (zero incidence angle) for both apertureU
and apertureH (in dB). The horizontal axis should
be sinO from —1 to 1. (20%)



Homework #2

Calculate the —6dB and —20dB mainlobe widths of the
diffraction patterns obtained from 1 and 2. Comment
on your answers and the sidelobe levels between two
different apodization schemes. (20%)

Repeat 3 if the incidence angle 1s at 45 degrees. Justify
your answers (20%)

Repeat 2 and 3 1f the aperture 1s focused at 60 mm but
the diffraction patterns are drawn at 55 mm and 65
mm, respectively. Comments on your answers. (20%)

(Bonus) Use the simulation programs to investigate
dual beam formation (transmit/receive aperture, beam

spacing).



